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ABSTRACT: Developing novel energy storage materials is critical to many renewable energy technologies. In this work, we
report on the synthesis and electrochemical properties of materials composed of porous cobalt selenide microspheres prepared
from molecular cluster precursors. The cobalt selenide microspheres excel as Na+ ion battery electrode materials, with a specific
capacity of ∼550 mA h/g and excellent cycling stability of 85% over 100 cycles, and perform equally well as Li+ ion battery
electrodes with a specific capacity of ∼600 mA h/g and cycling stability of 80% over 100 cycles. Materials which reversibly store
large amounts of Na+ ions are uncommon, and these performances represent significant advances in the field. More broadly, this
work establishes metal chalcogenide molecular clusters as valuable precursors for creating new, tunable energy storage materials.
KEYWORDS: cluster compounds, microspheres, electrochemistry, batteries, conducting material

Cobalt chalcogenides have attracted considerable attention
because of their rich structural chemistry and their

potential use in hydrodesulfurization,1,2 electrocatalysis,3,4 dye-
sensitized solar cells,5,6 supercapacitors,7−9 and battery10−14

applications. While a variety of cobalt chalcogenide poly-
morphs can be prepared using bulk syntheses (e.g., solid
state,15 solution phase,13 and solvothermal reactions16), there
is a sustained interest in creating nanostructures whose
performances can surpass their bulk crystalline counterparts
because of unique structures, morphologies, quantum confine-
ment effects, and surface properties.17,18

Here, we report a new material composed of microporous
cobalt chalcogenide microparticles synthesized from molecular
cluster precursors and their performances as battery electrode
materials. Recently deployed as superatomic building blocks to
create functional materials,19,20 metal chalcogenide molecular
clusters have previously been shown to convert to bulk
crystalline solids by removing their passivating ligands via
thermolysis.21,22 Other well-defined clusters have been used as
electronic or catalytic dopants in hybrid materials.23−25 In this
work, we develop a new solution-phase chemical approach to
dissociate the capping ligands from the molecular cluster
Co6Se8(PEt3)6 using elemental Se as a phosphine scavenger.
The resulting cobalt selenide microspheres, designated as
CoSe-MS, have high surface areas and robust electrochemical
properties, a combination that is particularly attractive for
battery applications. We find that the material performs best

for Na+ ion battery applications relative to similar materials,
with a high specific capacity (∼550 mA h/g) and excellent
cycling performances (85% retention after 100 cycles).
Likewise, CoSe-MS functions well as anode materials for Li+

ions (∼600 mA h/g and cycling stability of 80% over 100
cycles).
Figure 1 illustrates the synthesis of CoSe-MS, starting from

the parent molecular cluster Co6Se8(PEt3)6. The synthesis of
these cluster precursors from Co2(CO)8, PEt3, and Se is
detailed in the Supporting Information.22 To dissociate PEt3
from the Co6Se8 core, we combine the molecular cluster with
six equivalents of Se in toluene and heat the suspension to 150
°C in a thick wall vessel sealed under N2 with a Teflon stopper.
A black solid, CoSe-MS, precipitates after 24 h and is collected
under a N2 atmosphere by filtration and dried in vacuo. The
key concept is that the phosphine ligands are somewhat labile
at high temperatures in solution and upon dissociation from
the core, they become kinetically trapped as Et3PSe. We
propose that upon ligand dissociation, the naked cluster cores
first fuse together through Co−Se linkages to form an
extended structure. Champsaur et al. recently reported a
related fusion reaction in a model Co6Se8 cluster.
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Scanning electron microscopy (SEM) reveals that CoSe-MS
consists of microscopic spheres of cobalt selenide with
diameters typically in the range 0.5−1 μm (Figure 2). The
high-magnification SEM images of the microspheres shown in
Figure 2a,b hint at a porous structure. N2 adsorption isotherm
measurements and Brunauer−Emmett−Teller analysis confirm
this key observation: the N2 isotherms for CoSe-MS in Figure
S4 show H4-type hysteresis loops associated with microporous
or mesoporous structures.27 CoSe-MS has a specific surface
area of ∼130 m2/g and an average pore diameter of ∼1.7 nm,
as estimated by Barrett−Joyner−Halenda analysis (Table S2).
X-ray pair distribution function (PDF) analysis28 is

performed on CoSe-MS to further investigate its structure. A
strategy of testing all the structures composed of Co and Se,
available at the Inorganic Crystal Structure Database,
(ICSD)29 is used. The best fit is obtained for a nanocrystalline
Co3Se4 (NC-Co3Se4) structure model (Figure 2c inset).30

Closer inspection of the fit in Figure 2c suggests that this
model fits the PDF peaks well in the high-r region, but
additional unfit signal is evident in the difference curve in the
low-r region. We, therefore, explore a two-phase model where a
second structure is added to the NC-Co3Se4 model but given a

much shorter range of structural coherence to explain the extra
signal in the low-r region. The best agreement was obtained by
adding a second NC-Co3Se4 phase with a small spherical
particle diameter. The resulting PDF fit of short range-ordered
(SRO) NC-Co3Se4 + longer range-ordered (LRO) NC-Co3Se4
model, with a goodness of fit parameter, Rw = 0.159, is shown
in Figure 2d. The refined structural parameters are shown in
Table S3. The fit is greatly improved over the single-phase fit.
The detailed structural modeling and the method for PDF
measurements28,31−40 can be found in the Supporting
Information.
In agreement with the PDF results, the powder X-ray

diffraction pattern of CoSe-MS matches that of Co3Se4 (Figure
S1). Energy-dispersive X-ray (EDX) spectroscopy establishes
the composition of the solid as CoSe1.2P0.1 (Table S1),
suggesting ∼10% Se deficiency in the material.
With a porous structure and spherical morphology, CoSe-

MS differs significantly from other cobalt chalcogenide
materials. To illustrate this, we annealed CoSe-MS at 400 °C
for 4 h (CoSe-1, Table 1). The microsphere morphology is
maintained (Figure S2) but the internal surface area of CoSe-1
is dramatically decreased to 7 m2/g. The N2 isotherms show
essentially no hysteresis, consistent with a nonporous structure.
The final composition of CoSe-1 is CoSe1.1P0.01 as determined
by EDX. Note that the annealed compounds show a loss of
crystallinity (Figure S1). We also prepared an additional
comparison material by sealing pristine microcrystalline
Co6Se8(PEt3)6 in a quartz tube and heating the material to
400 °C to dissociate PEt3 (CoSe-2, Table 1). The SEM images
of the resulting materials reveal that this approach produces
submicron irregular particles (Figure S2) that differ drastically
from CoSe-MS.
The combination of the microspherical morphology, micro-

porosity, and crystalline structure imparts CoSe-MS with
unique electrochemical properties. To explore these properties,
we fabricated working electrodes by depositing a slurry of the
material, carbon black, and polyvinylidenefluoride onto Cu

Figure 1. Schematic illustrating cluster-based synthesis of CoSe-MS.
Elemental Se acts as a phosphine scavenger allowing for cluster cores
to bridge via Co−Se linkages. The resulting materials are highly
porous

Figure 2. (a,b) SEM images of CoSe-MS at (a) low magnification and (b) high magnification. (c,d) X-ray PDF of the CoSe-MS data (red curve)
with (c) the best-fit calculated PDF (purple) for the NC-Co3Se4 model. The model was fit over a region of 5 < r < 30 Å, but the plot shows the
calculated curve extended to low-r. (d) Best-fit calculated PDF (purple) for the two-phase SRO NC-Co3Se4 + LRO NC-Co3Se4 model. The fit was
done over a range of 2 < r < 30 Å. The difference curves are shown offset below (green). The inset in (c) is the NC-Co3Se4 structure, where Co
atoms are in blue and Se atoms are in green.
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substrates. All electrochemical analyses are performed in coin
cells with the Li or Na metal as the counter electrode (details
of the working electrode, electrolytes, and cell fabrication are in
the Supporting Information). We find that CoSe-MS works
best as Na+ ion battery electrode materials, although it is an
adequate Li+ ion battery electrode material. Highlighting these
findings, Figure 3 presents the galvanostatic voltage data of
CoSe-MS on both ions.
At a current density of 50 mA/g, the CoSe-MS/Li cell shows

an initial capacity of 602 mA h/g. When the current density is
increased to 200 mA/g after two cycles, the initial capacity is
507 mA h/g; it remains at ∼405 mA h/g after 100 cycles at
200 mA/g, for a capacity retention of 80% (Figure 3a). While
the exact reason for this capacity loss remains unclear, we note
that it is mainly due to the shortening of the plateau at 1.5 V.
One likely cause is the conversion reaction between the
material and Li+ ions. SEM confirms that the morphology of
the electrode material is essentially unchanged after cycling
(Figure S3), indicating that the microporous structure allows
the structure to release the strains created by the conversion
reaction and prevents the spherical particles from breaking
apart, leading to reasonable cycling. Based on the voltage
profile and specific capacity, we infer that the overall
electrochemical reaction is Co3Se4 + 8Li → 3Co + 4Li2Se

for Co3Se4/Li cells and Co3Se4 + 8Na → 3Co + 4Na2Se for
Co3Se4/Na cells.

18

To gain further insight into the electrochemical properties of
CoSe-MS, we performed galvanostatic cycling experiments and
compared the performances of these nanomaterials with those
of the annealed control samples (Figures 3b and S7). Overall,
these measurements confirm the higher capacity and
significantly better cycling stability of the microporous CoSe-
MS. When comparing CoSe-MS with nonporous CoSe-1, we
observe vastly different behaviors: the initial capacity is lower
(442 mA h/g at current density 50 mA/g) and decays faster to
156 mA h/g after 100 cycles. This represents a capacity
retention of only 35%. Moreover, electrochemical impedance
spectroscopy (EIS) measurements of CoSe-MS/Li and CoSe-
1/Li cells suggest that the microporous structure of CoSe-MS
provides better diffusion kinetics for different charge states,
when compared to a nonporous material (Figure S8).
Remarkably, CoSe-MS excels for Na+ ions. The design of

high-performance anode materials for Na+ ion batteries is more
challenging than Li+ ion batteries because of the sluggish solid-
state diffusion of Na+.41 Traditional compounds such as metal
oxides, metal chalcogenides, and carbonaceous materials suffer
from low specific capacities (200−300 mA h/g) at higher
current densities and restricted cycle life due to high volume
expansion.42−45 As a reference, state-of-the-art chalcogenide-

Table 1. Synthesis, Specific Surface Areas, and Electrochemical Performances of CoSe-MS and Control Materials

name synthesis initial capacity (mA h/g) cycles/capacity retention specific surface area (m2/g)

CoSe-MS/Li Co6Se8(PEt3)6 and Se in toluene at 150 °C 602 100/80% 131
CoSe-1/Li CoSe-MS annealed at 400 °C 442 100/35% 7
CoSe-MS/Na Co6Se8(PEt3)6 and Se in toluene at 150 °C 554 100/85% 131
CoSe-1/Na CoSe-MS annealed at 400 °C 520 100/5% 7
CoSe-2/Na thermolysis of Co6Se8(PEt3)6 at 400 °C 470 75/50% NA

Figure 3. (a) Galvanostatic charge and discharge profiles of CoSe-MS vs Li/Li+ in 1 M LiTFSI (TFSI = bis(trifluoromethanesulfonyl)imide) in
dioxolane (DOL) at 50 mA/g for the first three cycles, followed by 200 mA/g for the rest of the experiment. (b) Cycle stability of CoSe-MS/Li and
CoSe-1/Li half-cells. The testing conditions are the same as in (a). (c) Galvanostatic charge and discharge profiles of CoSe-MS vs Na/Na+ in 1 M
NaPF6 in 1:1 DOL/DME (DME = dimethoxyethane) at 50 mA/g for the first two cycles, followed by 200 mA/g for the rest of the experiment. (d)
Cycle stability of CoSe-MS/Na and CoSe-1/Na half-cells. The testing conditions are the same as in (c).
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based Na+ ion battery materials such as MoS2 nanoflowers, Cu-
doped CoSe2 microboxes, and hollow CoSe2 microspheres
show specific capacities of 350 mA h/g after 300 cycles,46 400
mA h/g after 500 cycles,47 and 467 mA h/g after only 40
cycles,18 respectively.
In this context, the electrochemical properties of the CoSe-

MS/Na cell presented in Figure 3c,d are exciting. The cyclic
voltammogram (CV) reveals that the main cathodic and
anodic peaks, respectively, at 1.0 and 1.5 V versus Na+/Na, are
essentially unchanged after cycling, indicating a reversible
reaction (Figure S6) likely similar to other described
mechanisms.18 A new peak at 0.6 V versus Na+/Na, which
gradually grows in with each cycle, suggests that the structure
of the material is changing, potentially forming polyselenides.
The galvanostatic voltage profile of CoSe-MS/Na measured

at a current density of 200 mA/g reflects the features in
voltammogram (Figure 3c). During discharge, after a short
plateau at 1.8 V, the voltage quickly drops down to 1.2 V, at
which point a second, longer plateau occurs between 1.2 and 1
V. This plateau corresponds to the major peak at 1.0 V in the
CV. Upon cycling, an additional plateau gradually appears at
0.7 V, which is consistent with the peak growing at 0.6 V in the
CV.
To evaluate performance in battery applications, the CoSe-

MS/Na cell is initially cycled at a current density of 50 mA/g
for three cycles: the initial capacity is 554 mA h/g (Figures 3d
and S7). The current density is then increased to 200 mA/g for
100 cycles: the capacity starts at 437 mA h/g and decreases to
371 mA h/g at the 100th cycle, for a capacity retention of 85%.
By comparison, CoSe-1/Na has lower initial capacities of 520
and 417 mA h/g at current densities of 50 and 200 mA/g,
respectively. The capacity decreases to 60 mA h/g after only 70
cycles. Also, CoSe-2 has an initial capacity of 470 mA h/g at
200 mA/g but only has a capacity retention of 50% after 75

cycles (Figure S7). The capacity is also much better than
previous reports on transition-metal selenides.48 These results
indicate that the microporous structure of CoSe-MS is critical
in determining the electrochemical performance of the
material, presumably by enabling transport of the Na+ ions
and reducing the lattice strains. This is supported by SEM
images of the CoSe-MS electrode after 100 cycles, showing
intact microspheres. EIS data of CoSe-MS/Na and CoSe-1/Na
cells (Figure S8) also strongly imply that the microporous
structure of CoSe-MS significantly enhances the diffusion
kinetics of Na+ ions.
The microporosity also improves the power capacity of the

materials as ions can access higher surface areas and the
diffusion through the solid is reduced. The CoSe-MS/Li cell
delivers capacities of 576, 568, 563, 539, and 467 mA h/g at
rates of 0.2, 0.33, 0.5, 1, and 2 C (1 C = 500 mA/g),
respectively, which are 95, 94, 93, 89, and 77% of that at 0.1 C
(606 mA h/g) (Figure 4). The plateaus at 1.5 V are
unchanged, indicating that the reaction mechanism remains
the same across different current densities (Figure 4a).
Similarly, the CoSe-MS/Na cell shows attractive performance
across a wide range of rates, even though the Na+ ions are
much larger than Li+ ions. The cell delivers capacities of 532,
474, 424, and 360 mA h/g at rates of 0.2, 0.5, 1, and 2 C,
respectively, corresponding to 87, 77, 69, and 59% of that at
0.1 C (612 mA h/g) (Figure 4b), with the same shape of
voltage profiles. When compared to nonporous control
material CoSe-1, the power capacity and cycling stability of
CoSe-MS are much better (Figure 4b,d). These results show
that the high surface area and microporosity of CoSe-MS can
improve the reaction and ion-diffusion kinetics, enabling
excellent power capacities.
In summary, we have developed a mild chemical approach to

convert cobalt selenide molecular clusters into polycrystalline

Figure 4. (a) Representative charge and discharge profiles of CoSe-MS/Li half-cells at various rates from 0.1 to 2 C. (b) Rate capacity of the CoSe-
MS/Li half-cells at various rates from 0.1 to 2 C (1 C = 500 mA/g). (c) Representative charge and discharge profiles of CoSe-MS/Na half-cells at
various rates from 0.1 to 2 C. (d) Rate capacity of the CoSe-MS/Na and CoSe-1/Na half-cells at various rates from 0.1 to 2 C (1 C = 500 mA/g).
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mesoporous microspheres. Because of their porosities, high
surface areas, and robust electrochemical properties, these new
materials exhibit excellent performances in Li+ and Na+ ion
battery electrode applications. These results chart a clear path
to expand the development of energy storage materials using
molecular cluster precursors.
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The crystal structures of Co3Se4 and Co7Se8. Solid State Sci. 2004, 6,
725.
(31) Billinge, S. J. L. Nanoscale structural order from the atomic pair
distribution function (PDF): There’s plenty of room in the middle. J.
Solid State Chem. 2008, 181, 1695.
(32) Billinge, S. J. L.; Kanatzidis, M. G. Beyond crystallography: the
study of disorder, nanocrystallinity and crystallographically challenged
materials with pair distribution functions. Chem. Commun. 2004, 7,
749.
(33) Chupas, P. J.; Qiu, X.; Hanson, J. C.; Lee, P. L.; Grey, C. P.;
Billinge, S. J. L. Rapid-acquisition pair distribution function (RA-
PDF) analysis. J. Appl. Crystallogr. 2003, 36, 1342.
(34) Proffen, T.; Billinge, S. J. L. PDFFIT, a program for full profile
structural refinement of the atomic pair distribution function. J. Appl.
Crystallogr. 1999, 32, 572.
(35) Farrow, C. L.; Juhas, P.; Liu, J. W.; Bryndin, D.; Bozǐn, E. S.;
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